Работа силы. Мощность.

1. Поступательное движение.

Рассмотрим материальную точку движущуюся по некоторой траектории. Пусть на точку действует сила \vec{F} , $A = |\vec{F}| S \cos \alpha$

$$\partial A = (\vec{F} \partial \vec{r}) \implies \partial A = F \partial r \cos(\vec{F} \partial \vec{r})$$

Чтобы вычислить работу на участке от точки 1 до точки 2, нужно траекторию разделить на бесконечно-малые участки ∂r , на каждом участке вычислить элементарную работу и все эти элементарные работы сложить. Таким образом, работа на участке 1, 2 это сумма элементарных работ.

$$A_{1\rightarrow 2} = \int_{1}^{2} \partial A = \int_{1}^{2} \vec{F} \partial \vec{r}$$

Работа силы F:
$$A_{1\to 2} = \int_{1}^{2} F_r \partial r$$
 , [A] = H * м = Дж

- 1. Если на тело действует несколько сил, то каждая из сил совершает свою работу.
- 2. Знак работы зависит от знака проекции $\ F_r$, если сила препятствует перемещению $\ F_r$, работа меньше нуля.
- 3. Сила постоянна, а движение по прямой

$$\vec{F} = const$$

$$A_{1\to 2} = \int_{1}^{2} F\cos\alpha \,\partial r = F\cos\alpha \int_{1}^{2} \partial r = Fr_{12}\cos\alpha$$

4. Мощность — это работа, совершаемая за единицу времени

$$N = \frac{\partial a}{\partial t}$$
, $N = \frac{\vec{F} \cdot \partial \vec{r}}{\partial t} = \vec{F} \cdot \frac{\partial \vec{r}}{\partial t} = \vec{F} \cdot \vec{V}$

2. Вращательное движение.

$$\partial \varphi$$
 , $\partial A=F\partial r=Fr\partial \varphi=M\partial \varphi$ $A_{1\to 2}=\int\limits_{1}^{2}M_{\varphi}\partial \varphi$, M_{φ} это проекция \vec{M} на $\partial \vec{\varphi}$

Аналогия, между поступательным и вращательным движением.

Поступательное	Вращательное
$\vec{V} = \frac{\partial \vec{r}}{\partial t}$ $\vec{a} = \frac{\partial \vec{V}}{\partial t} = \frac{\partial^2 \vec{r}}{\partial t} (\vec{V}' = \vec{r}'')$	$\vec{\omega} = \frac{\partial \vec{\phi}}{\partial t}$ $\vec{\epsilon} = \frac{\partial \vec{\omega}}{\partial t} = \frac{\partial^2 \vec{\phi}}{\partial t^2} (\vec{\omega}' = \vec{\phi}'')$
$m \ ec{F}$	$ec{M}$

$$A_{1\to 2} = \int_{1}^{2} (\vec{F} \, \partial \vec{r})$$

$$\vec{a} = \frac{\vec{F}}{m}$$

$$\vec{p} = m \vec{V}$$

$$W_{\text{KUH}} = \frac{mV^{2}}{2}$$

$$A_{1\to 2} = \int_{1}^{2} (\vec{M} \, \partial \vec{\phi})$$

$$\vec{\epsilon} = \frac{\vec{M}}{I}$$

$$\vec{L} = I \vec{\omega}$$

$$W_{\text{KUH}} = I \frac{\omega^{2}}{2}$$

Примеры вычисления работ некоторых сил

1. Работа силы тяжести. $\vec{F} = m\vec{g}$

Пусть тело перемещается по некоторой траектории из точки 1 в точку 2. Найти работу.

$$A = \int_{1}^{2} (\vec{F} \partial \vec{r})$$

$$(\vec{F} \partial \vec{r}) = F_{x} \partial x + F_{y} \partial y + F_{z} \partial z = 0 + 0 + (-mg) \partial z = -mg \partial z$$

$$A_{1 \to 2} = \int_{z_{1}}^{z_{2}} (-mg \partial z) = -mg \int_{z_{1}}^{z_{2}} \partial z = -mg z \vee \dot{c} z_{1} \dot{c} z_{2} = mg z_{1} - mg z_{2}$$

Если
$$z_1 = z_2$$
 , то $A = 0$ $A_{1 \to 2} = mg(z_1 - z_2)$

2. Работа силы упругости. $F_{ynp} = k |x|$, х — величина деформации, к — коэффициент жесткости.

$$(\vec{F} \partial \vec{r}) = F_{x} \partial x = (-kx) \partial x$$

$$A_{1\to 2} = \int_{x_1}^{x_2} (-kx) \partial x = -k \int_{x_1}^{x_2} x \partial x = -k \frac{x^2}{2} \vee i x_1 i x_2 = \frac{kx_1^2}{2} - \frac{kx_2^2}{2}$$

$$A_{1\to 2} = \frac{kx_1^2}{2} - \frac{kx_2^2}{2}$$

3. Работа сил тяготения и кулона.

а) Сила тяготения

$$\begin{split} F_{21} &= G \frac{m_1 m_2}{r_{12}^2} \\ \vec{F}_{21} &= -G \frac{m_1 m_2}{r_{12}^2} \frac{\vec{r_{12}}}{r_{12}} \quad (\frac{\vec{r_{12}}}{r_{12}} - e \partial \textit{ничиный вектор}) \end{split}$$

б) Сила Кулона

$$\vec{F}_{21} = k \frac{q_1 q_1}{z_{12}^2} \frac{\vec{r}_{12}}{r_{12}}$$

Если q_1 и q_2 одного знака, то $\vec{F}_{21} \uparrow \uparrow r_{12}$ Если q_1 и q_2 разных знаков, то $q_1q_2 < 0$ и $\vec{F}_{21} \uparrow \downarrow r_{12}$

$$(\vec{F}\,\partial\,\vec{r}) = \frac{\alpha}{r^3}(\vec{r}\,\partial\,\vec{r}) = \frac{\alpha}{r^3}r\underbrace{\partial\,r\cos\alpha}_{\partial r_2} = \frac{\alpha}{r^3}r\,\partial\,r = \frac{\alpha}{r^2}\partial\,r$$
 $\partial\,r_2$ - проекция $\partial\,\vec{r}$ на \vec{r} $\partial\,r_2 \to \partial\,r$

$$A_{_{\mathit{mягомения}\,1 o 2}} = rac{-G\,m_1^{}m_2^{}}{r_1^{}} - rac{-G\,m_1^{}m_2^{}}{r_2^{}} \ A_{_{\mathit{Кулона}\,1 o 2}} = rac{K\,q_1^{}q_2^{}}{r_1^{}} - rac{K\,q_1^{}q_2^{}}{r_2^{}} \$$

4. Работа силы трения

Е. Расота силы трения
$$F_{mpeния} = \mu N = const$$

$$\partial A = (\vec{F} \partial \vec{r}) = \mu N \partial r \cos(180) = -\mu N \partial r$$

$$A_{1 \to 2} = \int_{1}^{2} (-\mu N) \partial r = -\mu N \int_{1}^{2} \partial z = -\mu N l_{12}$$

$$A_{1 \to 2} = -\mu N l_{12}$$